
1 | P a g e

Understanding Inheritance and Polymorphism

Objectives:

You will learn how to

 build families of related classes using inheritance.

 establish a polymorphic interface into class hierarchies using virtual and abstract

members,

 the role of explicit casting.

The Basic Mechanics of Inheritance

Inheritance is an aspect of OOP that facilitates code reuse. Specifically speaking, code reuse

comes in two flavors: inheritance (the “is-a” relationship) and the containment/delegation model

(the “has-a” relationship).

When you establish “is-a” relationships between classes, you are building a dependency between

two or more class types. The basic idea behind classical inheritance is that new classes can be

created using existing classes as a starting point.

To begin with a simple example, create a new Console Application project named

BasicInheritance. Now assume you have designed a class named Car that models some basic

details of an automobile.

// A simple base class.
class Car
{

public readonly int maxSpeed;
private int currSpeed;
public Car(int max)
{

maxSpeed = max;
}
public Car()
{

maxSpeed = 55;
}
public int Speed
{

get { return currSpeed; }
set
{

currSpeed = value;
if (currSpeed > maxSpeed)
{

2 | P a g e

currSpeed = maxSpeed;
}

}
}

}

Notice that the Car class is using encapsulation services to control access to the private

currSpeed field using a public property named Speed. At this point, you can exercise your Car

type as follows:

static void Main(string[] args)
{

Console.WriteLine("***** Basic Inheritance *****\n");
// Make a Car object and set max speed.
Car myCar = new Car(80);
// Set the current speed, and print it.
myCar.Speed = 50;
Console.WriteLine("My car is going {0} MPH", myCar.Speed);
Console.ReadLine();

}

Specifying the Parent Class of an Existing Class

Now assume you want to build a new class named MiniVan. Like a basic Car, you want to define

the MiniVan class to support data for a maximum speed, a current speed, and a property named

Speed to allow the object user to modify the object’s state. Clearly, the Car and MiniVan classes

are related; in fact, it can be said that a MiniVan “is-a” type of Car. The “is-a” relationship

(formally termed classical inheritance) allows you to build new class definitions that extend the

functionality of an existing class.

The existing class that will serve as the basis for the new class is termed a base class, superclass,

or parent class. The role of a base class is to define all the common data and members for the

classes that extend it. The extending classes are formally termed derived or child classes. In C#,

you make use of the colon operator on the class definition to establish an “is-a” relationship

between classes. Assume you have authored the following new MiniVan class:

// MiniVan "is-a" Car.
class MiniVan : Car
{}

Currently, this new class has not defined any members whatsoever. So, what have you

gained by extending your MiniVan from the Car base class? Simply put, MiniVan objects

now have access to each public member defined within the parent class.

Although constructors are typically defined as public, a derived class never inherits the

constructors of a parent class. Constructors are used to construct only the class that they

are defined within.

3 | P a g e

Given the relation between these two class types, you could now make use of the MiniVan class

like so:

static void Main(string[] args)
{

Console.WriteLine("***** Basic Inheritance *****\n");
...
// Now make a MiniVan object.
MiniVan myVan = new MiniVan();
myVan.Speed = 10;
Console.WriteLine("My van is going {0} MPH", myVan.Speed);
Console.ReadLine();

}

Again, notice that although you have not added any members to the MiniVan class, you have

direct access to the public Speed property of your parent class and have thus reused code.

Always remember that inheritance preserves encapsulation; therefore, the following code

results in a compiler error, as private members can never be accessed from an object reference:

static void Main(string[] args)
{

Console.WriteLine("***** Basic Inheritance *****\n");
...
// Make a MiniVan object.
MiniVan myVan = new MiniVan();
myVan.Speed = 10;
Console.WriteLine("My van is going {0} MPH", myVan.Speed);
// Error! Can’t access private members!
myVan.currSpeed = 55;
Console.ReadLine();

}

On a related note, if the MiniVan defined its own set of members, it would still not be able to

access any private member of the Car base class. Remember, private members can be accessed

only by the class that defines it. For example, the following method in MiniVan would result in a

compiler error:

// MiniVan derives from Car.
class MiniVan : Car
{

public void TestMethod()
{

// OK! Can access public members
// of a parent within a derived type.
Speed = 10;
// Error! Cannot access private members of parent within a derived type.
currSpeed = 10;

}
}

4 | P a g e

Regarding Multiple Base Classes

Speaking of base classes, it is important to keep in mind that C# demands that a given class have

exactly one direct base class. It is not possible to create a class type that directly derives from

two or more base classes (this technique, which is supported in unmanaged C++, is known as

multiple inheritance, or simply MI).

If you attempted to create a class that specifies two direct parent classes, as shown in the

following code, you would receive compiler errors:

// Illegal! C# does not allow multiple inheritance for classes!
class WontWork : BaseClassOne, BaseClassTwo
{}

The .NET platform does allow a given class, or structure, to implement any number of discrete

interfaces. In this way, a C# type can exhibit a number of behaviors while avoiding the

complexities associated with MI. On a related note, while a class can have only one direct base

class, it is permissible for an interface to directly derive from multiple interfaces.

The sealed Keyword

C# supplies another keyword, sealed, that prevents inheritance from occurring. When you

mark a class as sealed, the compiler will not allow you to derive from this type. For example,

assume you have decided that it makes no sense to further extend the MiniVan class.

// The MiniVan class cannot be extended!
sealed class MiniVan : Car
{}

If you (or a teammate) were to attempt to derive from this class, you would receive a compile-

time error.

// Error! Cannot extend
// a class marked with the sealed keyword!
class DeluxeMiniVan : MiniVan
{}

Most often, sealing a class makes the best sense when you are designing a utility class.

C# structures are always implicitly sealed. Therefore, you can never derive one structure

from another structure, a class from a structure, or a structure from a class. Structures can

be used to model only stand-alone, atomic, user-defined data types. If you want to leverage the

is-a relationship, you must use classes.

5 | P a g e

The Second Pillar of OOP: The Details of Inheritance
Create a new C# Console Application project named Employees.

// Be sure to change the namespace name in both C# files!
namespace Employees
{

partial class Employee
{...}

}

Your goal is to create a family of classes that model various types of employees in a company.

Assume you want to leverage the functionality of the Employee class to create two new classes

(SalesPerson and Manager). The new SalesPerson class “is-an” Employee (as is a Manager).

Remember that under the classical inheritance model, base classes (such as Employee) are used

to define general characteristics that are common to all descendants. Subclasses (such as

SalesPerson and Manager) extend this general functionality while adding more specific

functionality.

For your example, you will assume that the Manager class extends Employee by recording

the number of stock options, while the SalesPerson class maintains the number of sales

made. Insert a new class file (Manager.cs) that defines the Manager class with the following

automatic property:

// Managers need to know their number of stock options.
class Manager : Employee
{

public int StockOptions { get; set; }
}

Next, add another new class file (SalesPerson.cs) that defines the SalesPerson class with a fitting

automatic property.

// Salespeople need to know their number of sales.
class SalesPerson : Employee
{

public int SalesNumber { get; set; }
}

Now that you have established an “is-a” relationship, SalesPerson and Manager have

automatically inherited all public members of the Employee base class. To illustrate, update your

Main() method as follows:

// Create a subclass object and access base class
functionality.
static void Main(string[] args)
{

Console.WriteLine("***** The Employee Class Hierarchy *****\n");
SalesPerson fred = new SalesPerson();
fred.Age = 31;

6 | P a g e

fred.Name = "Fred";
fred.SalesNumber = 50;
Console.ReadLine();

}

The protected Keyword

As you already know, public items are directly accessible from anywhere, while private items

can be accessed only by the class that has defined them.

When a base class defines protected data or protected members, it establishes a set of items

that can be accessed directly by any descendant. If you want to allow the SalesPerson and

Manager child classes to directly access the data sector defined by Employee, you can update the

original Employee class definition as follows:

// Protected state data.
partial class Employee
{
// Derived classes can now directly access this information.
protected string empName;
protected int empID;
protected float currPay;
protected int empAge;
protected string empSSN;
...
}

The benefit of defining protected members in a base class is that derived types no longer have to

access the data indirectly using public methods or properties. The possible downfall, of course, is

that when a derived type has direct access to its parent’s internal data, it is possible to

accidentally bypass existing business rules found within public properties. When you define

protected members, you are creating a level of trust between the parent class and the child class,

as the compiler will not catch any violation of your type’s business rules.

Finally, understand that as far as the object user is concerned, protected data is regarded as

private. Therefore, the following is illegal:

static void Main(string[] args)
{

// Error! Can’t access protected data from client code.
Employee emp = new Employee();
emp.empName = "Fred";

}

Adding a Sealed Class

Recall that a sealed class cannot be extended by other classes. As mentioned, this technique is

most often used when you are designing a utility class. However, when building class

hierarchies, you might find that a certain branch in the inheritance chain should be “capped off,”

7 | P a g e

as it makes no sense to further extend the linage. For example, assume you have added yet

another class to your program (PTSalesPerson) that extends the existing SalesPerson type.

sealed class PTSalesPerson : SalesPerson
{

public PTSalesPerson(string fullName, int age, int empID,
float currPay, string ssn, int numbOfSales)
:base (fullName, age, empID, currPay, ssn, numbOfSales)
{
}

// Assume other members here...
}

Programming for Containment/Delegation/Aggregation

Recall that code reuse comes in two flavors. You have just explored the classical “is-a”

relationship. Assume you have created a new class that models an employee benefits package, as

follows:

// This new type will function as a contained class.
class BenefitPackage
{

// Assume we have other members that represent
// dental/health benefits, and so on.
public double ComputePayDeduction()
{

return 125.0;
}

}

Obviously, it would be rather odd to establish an “is-a” relationship between the BenefitPackage

class and the employee types. (Employee “is-a” BenefitPackage.) However, it should be clear

that some sort of relationship between the two could be established. In short, you would like to

express the idea that each employee “has-a” BenefitPackage. To do so, you can update the

Employee class definition as follows:

// Employees now have benefits.
partial class Employee
{

// Contain a BenefitPackage object.
protected BenefitPackage empBenefits = new BenefitPackage();

...
}

At this point, you have successfully contained another object. However, exposing the

functionality of the contained object to the outside world requires delegation. Delegation is

simply the act of adding public members to the containing class that use the contained

object’s functionality.

8 | P a g e

For example, you could update the Employee class to expose the contained empBenefits object

using a custom property, as well as make use of its functionality internally using a new method

named GetBenefitCost().

partial class Employee
{

// Contain a BenefitPackage object.
protected BenefitPackage empBenefits = new BenefitPackage();
// Expose certain benefit behaviors of object.
public double GetBenefitCost()

{ return empBenefits.ComputePayDeduction(); }
// Expose object through a custom property.
public BenefitPackage Benefits
{

get { return empBenefits; }
set { empBenefits = value; }

}
...

}

In the following updated Main() method, notice how you can interact with the internal

BenefitsPackage type defined by the Employee type.

static void Main(string[] args)
{

Console.WriteLine("***** The Employee Class Hierarchy *****\n");
...
Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
double cost = chucky.GetBenefitCost();
Console.ReadLine();

}

Understanding Nested Type Definitions

n C# (as well as other .NET languages), it is possible to define a type (enum, class, interface,

struct, or delegate) directly within the scope of a class or structure. When you have done so, the

nested (or “inner”) type is considered a member of the nesting (or “outer”) class and in the eyes

of the runtime can be manipulated like any other member (fields, properties, methods, and

events). The syntax used to nest a type is quite straightforward.

public class OuterClass
{

// A public nested type can be used by anybody.
public class PublicInnerClass {}
// A private nested type can only be used by members
// of the containing class.
private class PrivateInnerClass {}

}

Why you would want to do this? To understand this technique, ponder the following traits of

nesting a type:

9 | P a g e

Nested types allow you to gain complete control over the access level of the inner type because

they may be declared privately (recall that non-nested classes cannot be declared using the

private keyword).

Because a nested type is a member of the containing class, it can access private members of the

containing class. Often, a nested type is useful only as a helper for the outer class and is not

intended for use by the outside world.

When a type nests another class type, it can create member variables of the type, just as it would

for any point of data. However, if you want to use a nested type from outside the containing type,

you must qualify it by the scope of the nesting type. Consider the following code:

static void Main(string[] args)
{

// Create and use the public inner class. OK!
OuterClass.PublicInnerClass inner;
inner = new OuterClass.PublicInnerClass();
// Compiler Error! Cannot access the private class.
OuterClass.PrivateInnerClass inner2;
inner2 = new OuterClass.PrivateInnerClass();

}

To use this concept within the employees example, assume you have now nested the

BenefitPackage directly within the Employee class type.

partial class Employee
{

public class BenefitPackage
{

// Assume we have other members that represent
// dental/health benefits, and so on.
public double ComputePayDeduction()
{

return 125.0;
}

}
...
}

The nesting process can be as “deep” as you require. For example, assume you want to create an

enumeration named BenefitPackageLevel, which documents the various benefit levels an

employee may choose. To programmatically enforce the tight connection between Employee,

BenefitPackage, and BenefitPackageLevel, you could nest the enumeration as follows:

// Employee nests BenefitPackage.
public partial class Employee
{

// BenefitPackage nests BenefitPackageLevel.
public class BenefitPackage
{

10 | P a g e

public enum BenefitPackageLevel
{

Standard, Gold, Platinum
}
public double ComputePayDeduction()
{

return 125.0;
}

}
...
}

Because of the nesting relationships, note how you are required to make use of this enumeration:

static void Main(string[] args)
{

...
// Define my benefit level.
Employee.BenefitPackage.BenefitPackageLevel
myBenefitLevel =
Employee.BenefitPackage.BenefitPackageLevel.Platinum;
Console.ReadLine();

}

The Third Pillar of OOP: C#’s

Polymorphic Support

Recall that the Employee base class defined a method named GiveBonus() , which was originally

implemented as follows:

public partial class Employee
{

public void GiveBonus(float amount)
{

Pay += amount;
}

...
}

Because this method has been defined with the public keyword, you can now give bonuses to

salespeople and managers (as well as part-time salespeople).

static void Main(string[] args)
{

Console.WriteLine("***** The Employee Class Hierarchy *****\n");
// Give each employee a bonus?
Manager chucky = new Manager("Chucky", 50, 92,100000, "333-23-2322", 9000);
chucky.GiveBonus(300);
chucky.DisplayStats();
Console.WriteLine();
SalesPerson fran = new SalesPerson("Fran", 43, 93,3000, "932-32-3232", 31);
fran.GiveBonus(200);
fran.DisplayStats();
Console.ReadLine();

}

11 | P a g e

The problem with the current design is that the publicly inherited GiveBonus() method operates

identically for all subclasses. Ideally, the bonus of a salesperson or part-time salesperson should

take into account the number of sales. Perhaps managers should gain additional stock options in

conjunction with a monetary bump in salary. Given this, you are suddenly faced with an

interesting question: “How can related types respond differently to the same request?”

The virtual and override Keywords

Polymorphism provides a way for a subclass to define its own version of a method defined by its

base class, using the process termed method overriding.

If a base class wants to define a method that may be (but does not have to be) overridden by a

subclass, it must mark the method with the virtual keyword.

partial class Employee
{
// This method can now be "overridden" by a derived class.

public virtual void GiveBonus(float amount)
{

Pay += amount;
}

...
}

When a subclass wants to change the implementation details of a virtual method, it does so

using the override keyword. For example, the SalesPerson and Manager could override

GiveBonus() as follows (assume that PTSalesPerson will not override GiveBonus() and,

therefore, simply inherits the version defined by SalesPerson):

class SalesPerson : Employee
{

...
// A salesperson’s bonus is influenced by the number of sales.
public override void GiveBonus(float amount)
{

int salesBonus = 0;
if (SalesNumber >= 0 && SalesNumber <= 100)

salesBonus = 10;
else
{

if (SalesNumber >= 101 && SalesNumber <= 200)
salesBonus = 15;

else
salesBonus = 20;

}
base.GiveBonus(amount * salesBonus);
}

}

12 | P a g e

class Manager : Employee
{

...
public override void GiveBonus(float amount)
{

base.GiveBonus(amount);
Random r = new Random();
StockOptions += r.Next(500);

}
}

Notice how each overridden method is free to leverage the default behavior using the base

keyword. In this way, you have no need to completely reimplement the logic behind

GiveBonus() but can reuse (and possibly extend) the default behavior of the parent class.

Also assume that the current DisplayStats() method of the Employee class has been declared

virtually.

public virtual void DisplayStats()
{

Console.WriteLine("Name: {0}", Name);
Console.WriteLine("ID: {0}", ID);
Console.WriteLine("Age: {0}", Age);
Console.WriteLine("Pay: {0}", Pay);
Console.WriteLine("SSN: {0}",
SocialSecurityNumber);

}

By doing so, each subclass can override this method to account for displaying the number of

sales (for salespeople) and current stock options (for managers).

For example, consider the Manager’s version of the DisplayStats() method (the SalesPerson class

would implement DisplayStats() in a similar manner to show the number of sales).

public override void DisplayStats()
{

base.DisplayStats();
Console.WriteLine("Number of Stock Options: {0}", StockOptions);

}

Now that each subclass can interpret what these virtual methods mean for itself, each object

instance behaves as a more independent entity.

static void Main(string[] args)
{

Console.WriteLine("***** The Employee Class Hierarchy *****\n");
// A better bonus system!
Manager chucky = new Manager("Chucky", 50, 92,100000, "333-23-2322", 9000);
chucky.GiveBonus(300);
chucky.DisplayStats();
Console.WriteLine();
SalesPerson fran = new SalesPerson("Fran", 43, 93,3000, "932-32-3232", 31);
fran.GiveBonus(200);
fran.DisplayStats();

13 | P a g e

Console.ReadLine();
}

The following output shows a possible test run of your application thus far:

***** The Employee Class Hierarchy *****
Name: Chucky
ID: 92
Age: 50
Pay: 100300
SSN: 333-23-2322
Number of Stock Options: 9337
Name: Fran
ID: 93
Age: 43
Pay: 5000
SSN: 932-32-3232
Number of Sales: 31

Sealing Virtual Members

Recall that the sealed keyword can be applied to a class type to prevent other types from

extending its behavior via inheritance.

You might not want to seal an entire class but simply want to prevent derived types from

overriding particular virtual methods.

For example, assume you do not want part-time salespeople to obtain customized bonuses. To

prevent the PTSalesPerson class from overriding the virtual GiveBonus() method, you could

effectively seal this method in the SalesPerson class as follows:

// SalesPerson has sealed the GiveBonus() method!
class SalesPerson : Employee
{
...

public override sealed void GiveBonus(float amount)
{
...
}

}

Here, SalesPerson has indeed overridden the virtual GiveBonus() method defined in the

Employee class; however, it has explicitly marked it as sealed. Thus, if you attempted to override

this method in the PTSalesPerson class, you would receive compile-time errors, as shown in the

following code:

sealed class PTSalesPerson : SalesPerson
{

public PTSalesPerson(string fullName, int age, int empID, float currPay, string
ssn, int numbOfSales)
:base (fullName, age, empID, currPay, ssn, numbOfSales)
{
}
// Compiler error! Can’t override this method

14 | P a g e

// in the PTSalesPerson class, as it was sealed.
public override void GiveBonus(float amount)
{
}

}

Understanding Abstract Classes

Currently, the Employee base class has been designed to supply various data members for its

descendants, as well as supply two virtual methods (GiveBonus() and DisplayStats()) that may

be overridden by a given descendant. While this is all well and good, there is a rather odd

byproduct of the current design; you can directly create instances of the Employee base class.

// What exactly does this mean?
Employee X = new Employee();

In this example, the only real purpose of the Employee base class is to define common members

for all subclasses. In all likelihood, you did not intend anyone to create a direct instance of this

class, reason being that the Employee type itself is too general of a concept.

Given that many base classes tend to be rather nebulous entities, a far better design for this

example is to prevent the ability to directly create a new Employee object in code. In C#, you can

enforce this programmatically by using the abstract keyword in the class definition, thus creating

an abstract base class.

// Update the Employee class as abstract to prevent direct instantiation.
abstract partial class Employee
{
...
}

With this, if you now attempt to create an instance of the Employee class, you are issued a

compile-time error.

// Error! Cannot create an instance of an abstract class!
Employee X = new Employee();

At first glance, it might seem strange to define a class that you cannot directly create an instance

of. Recall, however, that base classes (abstract or not) are useful, in that they contain all the

common data and functionality of derived types. Using this form of abstraction, you are able to

model that the “idea” of an employee is completely valid; it is just not a concrete entity. Also

understand that although you cannot directly create an instance of an abstract class, it is still

assembled in memory when derived classes are created. Thus, it is perfectly fine (and common)

for abstract classes to define any number of constructors that are called indirectly when derived

classes are allocated.

15 | P a g e

Understanding the Polymorphic Interface

When a class has been defined as an abstract base class (via the abstract keyword), it may define

any number of abstract members. Abstract members can be used whenever you want to define a

member that does not supply a default implementation but must be accounted for by each

derived class. By doing so, you enforce a polymorphic interface on each descendant, leaving

them to contend with the task of providing the details behind your abstract methods.

Simply put, an abstract base class’s polymorphic interface simply refers to its set of virtual

and abstract methods. This is much more interesting than first meets the eye because this trait

of OOP allows you to build easily extendable and flexible software applications.

To illustrate, you will be implementing the hierarchy of shapes. To begin, create a new C#

Console Application project named Shapes.

Much like the employee hierarchy, you should be able to tell that you don’t want to allow the

object user to create an instance of Shape directly, as it is too abstract of a concept. Again, to

prevent the direct creation of the Shape type, you could define it as an abstract class. As well,

given that you want the derived types to respond uniquely to the Draw() method, let’s mark it as

virtual and define a default implementation.

// The abstract base class of the hierarchy.
abstract class Shape
{

public Shape(string name = "NoName")
{ PetName = name; }
public string PetName { get; set; }
// A single virtual method.
public virtual void Draw()
{

Console.WriteLine("Inside Shape.Draw()");
}

}

Notice that the virtual Draw() method provides a default implementation that simply prints out a

message that informs you that you are calling the Draw() method within the Shape base class.

Now recall that when a method is marked with the virtual keyword, the method provides a

default implementation that all derived types automatically inherit. If a child class so chooses,

it may override the method but does not have to. Given this, consider the following

implementation of the Circle and Hexagon types:

16 | P a g e

// Circle DOES NOT override Draw().
class Circle : Shape
{

public Circle() {}
public Circle(string name)

: base(name){}
}

// Hexagon DOES override Draw().

class Hexagon : Shape
{

public Hexagon() {}
public Hexagon(string name)

: base(name){}
public override void Draw()
{

Console.WriteLine("Drawing {0} the Hexagon", PetName);
}

}

The usefulness of abstract methods becomes crystal clear when you once again remember that

subclasses are never required to override virtual methods (as in the case of Circle). Therefore, if

you create an instance of the Hexagon and Circle types, you’d find that the Hexagon understands

how to “draw” itself correctly or at least print out an appropriate message to the console. The

Circle, however, is more than a bit confused.

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Polymorphism *****\n");
Hexagon hex = new Hexagon("Beth");
hex.Draw();
Circle cir = new Circle("Cindy");
// Calls base class implementation!
cir.Draw();
Console.ReadLine();

}

Now consider the following output of the previous Main() method:

***** Fun with Polymorphism *****
Drawing Beth the Hexagon
Inside Shape.Draw()

To force each child class to override the Draw() method, you can define Draw() as an

abstract method of the Shape class, which by definition means you provide no default

implementation whatsoever. To mark a method as abstract in C#, you use the abstract

keyword.

17 | P a g e

abstract class Shape
{

// Force all child classes to define how to be rendered.
public abstract void Draw();
...

}

Abstract methods can be defined only in abstract classes. If you attempt to do otherwise,

you will be issued a compiler error.

Methods marked with abstract are pure protocol. They simply define the name, return

type (if any), and parameter set (if required).

Here, the abstract Shape class informs the derived types that “I have a method named Draw()

that takes no arguments and returns nothing. If you derive from me, you figure out the

details.”

Given this, you are now obligated to override the Draw() method in the Circle class. If you do

not, Circle is also assumed to be a noncreatable abstract type that must be adorned with the

abstract keyword. Here is the code update:

// If we did not implement the abstract Draw() method, Circle would also be
// considered abstract, and would have to be marked abstract!
class Circle : Shape
{

public Circle() {}
public Circle(string name) : base(name) {}
public override void Draw()
{

Console.WriteLine("Drawing {0} the Circle", PetName);
}

}

The short answer is that you can now assume that anything deriving from Shape does indeed

have a unique version of the Draw() method. To illustrate the full story of polymorphism,

consider the following code:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Polymorphism *****\n");
// Make an array of Shape-compatible objects.
Shape[] myShapes = {new Hexagon(), new Circle(), new Hexagon("Mick"),
new Circle("Beth"), new Hexagon("Linda")};
// Loop over each item and interact with the polymorphic interface.
foreach (Shape s in myShapes)
{

s.Draw();
}
Console.ReadLine();

}

Here is the output from the modified Main() method:

18 | P a g e

***** Fun with Polymorphism *****
Drawing NoName the Hexagon
Drawing NoName the Circle
Drawing Mick the Hexagon
Drawing Beth the Circle
Drawing Linda the Hexagon

This Main() method illustrates polymorphism at its finest. Although it is not possible to directly

create an instance of an abstract base class (the Shape), you are able to freely store references to

any subclass with an abstract base variable.

Therefore, when you are creating an array of Shapes, the array can hold any object deriving from

the Shape base class (if you attempt to place Shapeincompatible objects into the array, you

receive a compiler error).

Given that all items in the myShapes array do indeed derive from Shape, you know they all

support the same “polymorphic interface” (or said more plainly, they all have a Draw() method).

As you iterate over the array of Shape references, it is at runtime that the underlying type is

determined. At this point, the correct version of the Draw() method is invoked in memory.

This technique also makes it simple to safely extend the current hierarchy. For example, assume

you derived more classes from the abstract Shape base class (Triangle, Square, etc.). Because of

the polymorphic interface, the code within your foreach loop would not have to change in the

slightest, as the compiler enforces that only Shape-compatible types are placed within the

myShapes array.

Understanding Member Shadowing

C# provides a facility that is the logical opposite of method overriding, termed shadowing.

Formally speaking, if a derived class defines a member that is identical to a member defined in a

base class, the derived class has shadowed the parent’s version. In the real world, the possibility

of this occurring is the greatest when you are subclassing from a class you (or your team) did not

create yourself (such as when you purchase a third-party .NET software package).

For the sake of illustration, assume you receive a class named ThreeDCircle from a co-worker

(or classmate) that defines a subroutine named Draw() taking no arguments.

class ThreeDCircle
{

public void Draw()
{

Console.WriteLine("Drawing a 3D Circle");
}

}

You figure that a ThreeDCircle “is-a” Circle, so you derive from your existing Circle type.

19 | P a g e

class ThreeDCircle : Circle
{

public void Draw()
{

Console.WriteLine("Drawing a 3D Circle");
}

}

After you recompile, you find the following warning:

’ThreeDCircle.Draw()’ hides inherited member ’Circle.Draw()’. To make the
current member override that implementation, add the override keyword.
Otherwise add the new keyword.

The problem is that you have a derived class (ThreeDCircle) that contains a method that is

identical to an inherited method. To address this issue, you have a few options. You could simply

update the parent’s version of Draw() using the override keyword (as suggested by the compiler).

With this approach, the ThreeDCircle type is able to extend the parent’s default behavior as

required. However, if you don’t have access to the code defining the base class (again, as would

be the case in many third- party libraries), you would be unable to modify the Draw() method as

a virtual member, as you don’t have access to the code file!

As an alternative, you can include the new keyword to the offending Draw() member of the

derived type (ThreeDCircle, in this example). Doing so explicitly states that the derived type’s

implementation is intentionally designed to effectively ignore the parent’s version (again, in the

real world, this can be helpful if external .NET software somehow conflicts with your current

software).

// This class extends Circle and hides the inherited Draw() method.
class ThreeDCircle : Circle
{

// Hide any Draw() implementation above me.
public new void Draw()
{

Console.WriteLine("Drawing a 3D Circle");
}

}

You can also apply the new keyword to any member type inherited from a base class (field,

constant, static member, or property). As a further example, assume that ThreeDCircle wants

to hide the inherited PetName property.

class ThreeDCircle : Circle
{

// Hide the PetName property above me.
public new string PetName { get; set; }
// Hide any Draw() implementation above me.
public new void Draw()
{

Console.WriteLine("Drawing a 3D Circle");

20 | P a g e

}
}

Finally, be aware that it is still possible to trigger the base class implementation of a shadowed

member using an explicit cast, as described in the next section. For example, the following code

shows:

static void Main(string[] args)
{

...
// This calls the Draw() method of the
ThreeDCircle.
ThreeDCircle o = new ThreeDCircle();
o.Draw();
// This calls the Draw() method of the parent!
((Circle)o).Draw();
Console.ReadLine();

}

Understanding Base Class/Derived Class Casting Rules
Now that you can build a family of related class types, you need to learn the rules of class

casting operations.

static void CastingExamples()
{

// A Manager "is-a" System.Object, so we can
// store a Manager reference in an object variable just fine.
object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);

}

In the Employees example, Managers, SalesPerson, and PTSalesPerson types all extend

Employee, so you can store any of these objects in a valid base class reference. Therefore, the

following statements are also legal:

static void CastingExamples()
{

// A Manager "is-a" System.Object, so we can
// store a Manager reference in an object variable just fine.
object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);
// A Manager "is-an" Employee too.
Employee moonUnit = new Manager("MoonUnit Zappa", 2, 3001, 20000, "101-11-
1321", 1);
// A PTSalesPerson "is-a" SalesPerson.
SalesPerson jill = new PTSalesPerson("Jill", 834, 3002, 100000, "111-12-
1119", 90);

}

The first law of casting between class types is that when two classes are related by an “is-a”

relationship, it is always safe to store a derived object within a base class reference. Formally,

this is called an implicit cast, as “it just works” given the laws of inheritance. This leads to some

21 | P a g e

powerful programming constructs. For example, assume you have defined a new method within

your current Program class.

static void GivePromotion(Employee emp)
{

// Increase pay...
// Give new parking space in company garage...
Console.WriteLine("{0} was promoted!", emp.Name);

}

Because this method takes a single parameter of type Employee, you can effectively pass any

descendant from the Employee class into this method directly, given the “is-a” relationship.

static void CastingExamples()
{

// A Manager "is-a" System.Object, so we can
// store a Manager reference in an object variable just fine.
object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);
// A Manager "is-an" Employee too.
Employee moonUnit = new Manager("MoonUnit Zappa", 2, 3001, 20000, "101-11-
1321", 1);
GivePromotion(moonUnit);
// A PTSalesPerson "is-a" SalesPerson.
SalesPerson jill = new PTSalesPerson("Jill", 834, 3002, 100000, "111-12-
1119", 90);
GivePromotion(jill);

}

The previous code compiles given the implicit cast from the base class type (Employee) to the

derived type. However, what if you also wanted to fire Frank Zappa (currently stored in a general

System.Object reference)? If you pass the frank object directly into this method, you will find a

compiler error as follows:

object frank = new Manager("Frank Zappa", 9, 3000, 40000, "111-11-1111", 5);
// Error!
GivePromotion(frank);

The problem is that you are attempting to pass in a variable that is not declared as an Employee

but a more general System.Object. Given that object is higher up the inheritance chain than

Employee, the compiler will not allow for an implicit cast, in an effort to keep your code as type-

safe as possible.

Even though you can figure out that the object reference is pointing to an Employee-compatible

class in memory, the compiler cannot, as that will not be known until runtime. You can satisfy

the compiler by performing an explicit cast.

This is the second law of casting: you can, in such cases, explicitly downcast using the C#

casting operator. The basic template to follow when performing an explicit cast looks something

like the following:

22 | P a g e

(ClassIWantToCastTo)referenceIHave

Thus, to pass the object variable into the GivePromotion() method, you could author the

following code:

// OK!
GivePromotion((Manager)frank);

The C# as Keyword

Be aware that explicit casting is evaluated at runtime, not compile time. For the sake of

argument, assume your Employees project had a copy of the Hexagon class created earlier in this

chapter. For simplicity, you could add the following class to the current project:

class Hexagon
{

public void Draw() { Console.WriteLine("Drawing a hexagon!"); }
}

Although casting the employee object to a shape object makes absolutely no

sense, code such as the following could compile without error:

// Ack! You can’t cast frank to a Hexagon, but this compiles fine!
object frank = new Manager();
Hexagon hex = (Hexagon)frank;

However, you would receive a runtime error, or, more formally, a runtime exception. When you

are performing an explicit cast, you can trap the possibility of an invalid cast using the try and

catch keywords.

// Catch a possible invalid cast.
object frank = new Manager();
Hexagon hex;
try
{

hex = (Hexagon)frank;
}
catch (InvalidCastException ex)
{

Console.WriteLine(ex.Message);
}

Obviously this is a contrived example; you would never bother casting between these types in

this situation. However, assume you have an array of System.Object types, only a few of which

contain Employee-compatible objects. In this case, you would like to determine whether an item

in an array is compatible to begin with and, if so, perform the cast.

C# provides the as keyword to quickly determine at runtime whether a given type is compatible

with another. When you use the as keyword, you are able to determine compatibility by checking

against a null return value. Consider the following:

// Use "as" to test compatability.
object[] things = new object[4];

23 | P a g e

things[0] = new Hexagon();
things[1] = false;
things[2] = new Manager();
things[3] = "Last thing";
foreach (object item in things)
{

Hexagon h = item as Hexagon;
if (h == null)

Console.WriteLine("Item is not a hexagon");
else
{

h.Draw();
}

}

Here you loop over each item in the array of objects, checking each one for compatibility with

the Hexagon class. If (and only if!) you find a Hexagon compatible object, you invoke the

Draw() method. Otherwise, you simply report the items are not compatible.

The C# is Keyword

In addition to the as keyword, the C# language provides the is keyword to determine whether

two items are compatible. Unlike the as keyword, however, the is keyword returns false, rather

than a null reference if the types are incompatible. In other words, the is keyword does not

perform any sort of cast; it just checks compatibility. If things are compatible, you can then

perform a safe cast. Currently, the GivePromotion() method has been designed to take any

possible type derived from Employee. Consider the following update, which now checks to see

exactly which “type of employee” you have been passed:

static void GivePromotion(Employee emp)
{

Console.WriteLine("{0} was promoted!", emp.Name);
if (emp is SalesPerson)
{

Console.WriteLine("{0} made {1} sale(s)!", emp.Name,
((SalesPerson)emp).SalesNumber);

Console.WriteLine();
}
if (emp is Manager)

{
Console.WriteLine("{0} had {1} stock options...", emp.Name,

((Manager)emp).StockOptions);
Console.WriteLine();

}
}

Here, you are performing a runtime check to determine what the incoming base class reference is

actually pointing to in memory. After you determine whether you received a SalesPerson or

24 | P a g e

Manager type, you are able to perform an explicit cast to gain access to the specialized members

of the class.

Also notice that you are not required to wrap your casting operations within a try/catch construct,

as you know that the cast is safe if you enter either if scope, given your conditional check.

The Master Parent Class: System.Object

The base classes in your hierarchies (Car, Shape, Employee) never explicitly specify their parent

classes.

// Who is the parent of Car?
class Car
{...}

In the .NET universe, every type ultimately derives from a base class named System.Object,

which can be represented by the C# object keyword (lowercase o). The Object class defines a set

of common members for every type in the framework. In fact, when you do build a class that

does not explicitly define its parent, the compiler automatically derives your type from Object. If

you want to be clear in your intentions, you are free to define classes that derive from Object as

follows (however again, there is no need to do so):

// Here we are explicitly deriving from System.Object.
class Car : object
{...}

Like any class, System.Object defines a set of members. In the following formal C# definition,

note that some of these items are declared virtual, which specifies that a given member may be

overridden by a subclass, while others are marked with static (and are therefore called at the

class level):

public class Object
{

// Virtual members.
public virtual bool Equals(object obj);
protected virtual void Finalize();
public virtual int GetHashCode();
public virtual string ToString();
// Instance-level, nonvirtual members.
public Type GetType();
protected object MemberwiseClone();
// Static members.
public static bool Equals(object objA, object
objB);
public static bool ReferenceEquals(object objA,
object objB);

}

25 | P a g e

Table 6-1 offers a rundown of the functionality provided by some of the methods you’re most

likely to use.

To illustrate some of the default behavior provided by the Object base class, create a final C#

Console Application project named ObjectOverrides.

Insert a new C# class type that contains the following empty class definition for a type named

Person:

// Remember! Person extends Object.
class Person {}

Now, update your Main() method to interact with the inherited members of System.Object as

follows:

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Fun with System.Object *****\n");
Person p1 = new Person();
// Use inherited members of System.Object.
Console.WriteLine("ToString: {0}", p1.ToString());
Console.WriteLine("Hash code: {0}",
p1.GetHashCode());
Console.WriteLine("Type: {0}", p1.GetType());
// Make some other references to p1.
Person p2 = p1;
object o = p2;
// Are the references pointing to the same object in memory?
if (o.Equals(p1) && p2.Equals(o))
{

Console.WriteLine("Same instance!");
}
Console.ReadLine();

}
}

Here is the output of the current Main() method:

***** Fun with System.Object *****
ToString: ObjectOverrides.Person
Hash code: 46104728
Type: ObjectOverrides.Person
Same instance!

First, notice how the default implementation of ToString() returns the fully qualified name of the

current type (ObjectOverrides.Person).

Here, you created a project named ObjectOverrides; thus, the Person type and the Program class

have both been placed within the ObjectOverrides namespace.

26 | P a g e

The default behavior of Equals() is to test whether two variables are pointing to the same object

in memory. Here, you create a new Person variable named p1. At this point, a new Person object

is placed on the managed heap.

p2 is also of type Person. However, you are not creating a new instance but rather assigning this

variable to reference p1. Therefore, p1 and p2 are both pointing to the same object in memory, as

is the variable o (of type object, which was thrown in for good measure). Given that p1, p2, and

o all point to the same memory location, the equality test succeeds.

Although the canned behavior of System.Object can fit the bill in a number of cases, it is quite

common for your custom types to override some of these inherited methods. To illustrate, update

the Person class to support some properties representing an individual’s first name, last name,

and age, each of which can be set by a custom constructor.

// Remember! Person extends Object.
class Person
{

public string FirstName { get; set; } = "";
public string LastName { get; set; } = "";
public int Age { get; set; }
public Person(string fName, string lName, int personAge)
{

FirstName = fName;
LastName = lName;
Age = personAge;

}
public Person(){}

}

Overriding System.Object.ToString()

Many classes (and structures) that you create can benefit from overriding ToString() in order to

return a string textual representation of the type’s current state. This can be quite helpful for

purposes of debugging (among other reasons). How you choose to construct this string is a

matter of personal choice; however, a recommended approach is to separate each name-value

pair with semicolons and wrap the entire string within square brackets (many types in the .NET

base class libraries follow this approach). Consider the following overridden ToString() for your

Person class:

public override string ToString()
{

string myState;
myState = string.Format("[First Name: {0}; Last
Name: {1}; Age: {2}]",
FirstName, LastName, Age);
return myState;

27 | P a g e

}

This implementation of ToString() is quite straightforward, given that the Person class has only

three pieces of state data. However, always remember that a proper ToString() override should

also account for any data defined up the chain of inheritance.

When you override ToString() for a class extending a custom base class, the first order of

business is to obtain the ToString() value from your parent using the base keyword. After you

have obtained your parent’s string data, you can append the derived class’s custom information.

Overriding System.Object.Equals()

Let’s also override the behavior of Object.Equals() to work with valuebased semantics. Recall

that by default, Equals() returns true only if the two objects being compared reference the same

object instance in memory. For the Person class, it may be helpful to implement Equals() to

return true if the two variables being compared contain the same state values (e.g., first name,

last name, and age).

First, notice that the incoming argument of the Equals() method is a general System. Object.

Given this, your first order of business is to ensure the caller has indeed passed in a Person object

and, as an extra safeguard, to make sure the incoming parameter is not a null reference.

After you have established the caller has passed you an allocated Person, one approach to

implement Equals() is to perform a field-by-field comparison against the data of the incoming

object to the data of the current object.

public override bool Equals(object obj)
{

if (obj is Person && obj != null)
{

Person temp;
temp = (Person)obj;
if (temp.FirstName == this.FirstName && temp.LastName == this.LastName

&& temp.Age == this.Age)
{

return true;
}
else
{

return false;
}

}
return false;

}

Here, you are examining the values of the incoming object against the values of your internal

values (note the use of the this keyword). If the name and age of each are identical, you have two

28 | P a g e

objects with the same state data and, therefore, return true. Any other possibility results in

returning false.

While this approach does indeed work, you can certainly imagine how labor intensive it would

be to implement a custom Equals() method for nontrivial types that may contain dozens of data

fields. One common shortcut is to leverage your own implementation of ToString(). If a class has

a prim-and- proper implementation of ToString() that accounts for all field data up the chain of

inheritance, you can simply perform a comparison of the object’s string data. public override

bool Equals(object obj)
{

// No need to cast "obj" to a Person anymore,
// as everything has a ToString() method.
return obj.ToString() == this.ToString();

}

Notice in this case that you no longer need to check whether the incoming argument is of the

correct type (a Person, in this example), as everything in .NET supports a ToString() method.

Even better, you no longer need to perform a property-by-property equality check, as you are not

simply testing the value returned from ToString().

Overriding System.Object.GetHashCode()

When a class overrides the Equals() method, you should also override the default implementation

of GetHashCode(). Simply put, a hash code is a numerical value that represents an object as a

particular state. For example, if you create two string variables that hold the value Hello, you

would obtain the same hash code. However, if one of the string objects were in all lowercase

(hello), you would obtain different hash codes. By default, System.Object.GetHashCode() uses

your object’s current location in memory to yield the hash value. However, if you are building a

custom type that you intend to store in a Hashtable type (within the System.Collections

namespace), you should always override this member, as the Hashtable will be internally

invoking Equals() and GetHashCode() to retrieve the correct object.

Although you are not going to place your Person into a System.Collections.Hashtable, for

completion let’s override GetHashCode(). There are many algorithms that can be used to create a

hash code—some fancy, others not so fancy. Most of the time, you are able to generate a hash

code value by leveraging the System.String’s GetHashCode() implementation.

Given that the String class already has a solid hash code algorithm that is using the character data

of the String to compute a hash value, if you can identify a piece of field data on your class that

should be unique for all instances (such as a Social Security number), simply call

29 | P a g e

GetHashCode() on that point of field data. Thus, if the Person class defined an SSN property,

you could author the following code:

// Assume we have an SSN property as so.
class Person
{

public string SSN {get; set;} = "";
// Return a hash code based on a point of unique string data.
public override int GetHashCode()
{

return SSN.GetHashCode();
}

}

If you cannot find a single point of unique string data but you have overridden ToString(), call

GetHashCode() on your own string representation:

// Return a hash code based on the person’s ToString() value.
public override int GetHashCode()
{

return this.ToString().GetHashCode();
}

Testing Your Modified Person Class

Now that you have overridden the virtual members of Object, updatecMain() to test your

updates.

static void Main(string[] args)
{

Console.WriteLine("***** Fun with System.Object *****\n");
// NOTE: We want these to be identical to test
// the Equals() and GetHashCode() methods.
Person p1 = new Person("Homer", "Simpson", 50);
Person p2 = new Person("Homer", "Simpson", 50);
// Get stringified version of objects.
Console.WriteLine("p1.ToString() = {0}", p1.ToString());
Console.WriteLine("p2.ToString() = {0}", p2.ToString());
// Test overridden Equals().
Console.WriteLine("p1 = p2?: {0}", p1.Equals(p2));
// Test hash codes.
Console.WriteLine("Same hash codes?: {0}",

p1.GetHashCode() == p2.GetHashCode());
Console.WriteLine();
// Change age of p2 and test again.
p2.Age = 45;
Console.WriteLine("p1.ToString() = {0}", p1.ToString());
Console.WriteLine("p2.ToString() = {0}", p2.ToString());
Console.WriteLine("p1 = p2?: {0}", p1.Equals(p2));
Console.WriteLine("Same hash codes?: {0}",

p1.GetHashCode() == p2.GetHashCode());
Console.ReadLine();

}

The output is shown here:

30 | P a g e

***** Fun with System.Object *****
p1.ToString() = [First Name: Homer; Last Name: Simpson; Age: 50]
p2.ToString() = [First Name: Homer; Last Name: Simpson; Age: 50]
p1 = p2?: True
Same hash codes?: True
p1.ToString() = [First Name: Homer; Last Name: Simpson; Age: 50]
p2.ToString() = [First Name: Homer; Last Name: Simpson; Age: 45]
p1 = p2?: False
Same hash codes?: False

The Static Members of System.Object

In addition to the instance-level members you have just examined, System.Object does define

two (very helpful) static members that also test for value-based or reference-based equality.

Consider the following code:

static void StaticMembersOfObject()
{

// Static members of System.Object.
Person p3 = new Person("Sally", "Jones", 4);
Person p4 = new Person("Sally", "Jones", 4);
Console.WriteLine("P3 and P4 have same state: {0}",

object.Equals(p3, p4));
Console.WriteLine("P3 and P4 are pointing to same object: {0}",

object.ReferenceEquals(p3, p4));
}

Here, you are able to simply send in two objects (of any type) and allow the System.Object class

to determine the details automatically.

